Nonoscillatory Central Schemes for One- and Two-Dimensional Magnetohydrodynamics Equations. II: High-Order SemiDiscrete Schemes

نویسندگان

  • Jorge Balbas
  • Eitan Tadmor
چکیده

We present a new family of high-resolution, nonoscillatory semidiscrete central schemes for the approximate solution of the ideal magnetohydrodynamics (MHD) equations. This is the second part of our work, where we are passing from the fully discrete staggered schemes in [J. Balbás, E. Tadmor, and C.-C. Wu, J. Comput. Phys., 201 (2004), pp. 261–285] to the semidiscrete formulation advocated in [A. Kurganov and E. Tadmor, J. Comput. Phys., 160 (2000), pp. 241–282]. This semidiscrete formulation retains the simplicity of fully discrete central schemes while enhancing efficiency and adding versatility. The semidiscrete algorithm offers a wider range of options to implement its two key steps: nonoscillatory reconstruction of point values followed by the evolution of the corresponding point valued fluxes. We present the solution of several prototype MHD problems. Solutions of one-dimensional Brio–Wu shock-tube problems and the two-dimensional Kelvin–Helmholtz instability, Orszag–Tang vortex system, and the disruption of a high density cloud by a strong shock are carried out using thirdand fourth-order central schemes based on the central WENO reconstructions. These results complement those presented in our earlier work and confirm the remarkable versatility and simplicity of central schemes as black-box, Jacobian-free MHD solvers. Furthermore, our numerical experiments demonstrate that this family of semidiscrete central schemes preserves the ∇ ·B = 0-constraint within machine round-off error; happily, no constrained-transport enforcement is needed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Multidimensional Relativistic Hydrodynamics code based on Semidiscrete Central and WENO schemes

We have proposed a new High Resolution Shock Capturing (HRSC) scheme for Special Relativistic Hydrodynamics (SRHD) based on the semidiscrete central Godunov-type schemes and a modified Weighted Essentially Non-oscillatory (WENO) data reconstruction algorithm. This is the first application of the semidiscrete central schemes with high order WENO data reconstruction to the SRHD equations. This me...

متن کامل

Maximum-principle-satisfying High Order Finite Volume Weighted Essentially Nonoscillatory Schemes for Convection-diffusion Equations

To easily generalize the maximum-principle-satisfying schemes for scalar conservation laws in [X. Zhang and C.-W. Shu, J. Comput. Phys., 229 (2010), pp. 3091–3120] to convection diffusion equations, we propose a nonconventional high order finite volume weighted essentially nonoscillatory (WENO) scheme which can be proved maximum-principle-satisfying. Two-dimensional extensions are straightforwa...

متن کامل

Non - oscillatory central schemes for one - and two - dimensional MHD equations : I q

The computations reported in this paper demonstrate the remarkable versatility of central schemes as black-box, Jacobian-free solvers for ideal magnetohydrodynamics (MHD) equations. Here we utilize a family of high-resolution, non-oscillatory central schemes for the approximate solution of the oneand two-dimensional MHD equations. We present simulations based on staggered grids of several MHD p...

متن کامل

High Order Compact Finite Difference Schemes for Solving Bratu-Type Equations

In the present study, high order compact finite difference methods is used to solve one-dimensional Bratu-type equations numerically. The convergence analysis of the methods is discussed and it is shown that the theoretical order of the method is consistent with its numerical rate of convergence. The maximum absolute errors in the solution at grid points are calculated and it is shown that the ...

متن کامل

The comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws

This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2006